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Abstract

Deep learning models are known to often learn features that

spuriously correlate with the class label during training but

are irrelevant to the prediction task. Existing methods typi-

cally address this issue by annotating potential spurious at-

tributes, or filtering spurious features based on some empir-

ical assumptions (e.g., simplicity of bias). However, these

methods may yield unsatisfactory performance due to the

intricate and elusive nature of spurious correlations in real-

world data. In this paper, we propose a data-oriented ap-

proach1 to mitigate the spurious correlation in deep learn-

ing models. We observe that samples that are influenced

by spurious features tend to exhibit a dispersed distribu-

tion in the learned feature space. This allows us to iden-

tify the presence of spurious features. Subsequently, we ob-

tain a bias-invariant representation by neutralizing the spu-

rious features based on a simple grouping strategy. Then,

we learn a feature transformation to eliminate the spuri-

ous features by aligning with this bias-invariant represen-

tation. Finally, we update the classifier by incorporating

the learned feature transformation and obtain an unbiased

model. By integrating the aforementioned identifying, neu-

tralizing, eliminating and updating procedures, we build an

effective pipeline for mitigating spurious correlation. Ex-

periments on image and NLP debiasing benchmarks show

an improvement in worst group accuracy of more than 20%

compared to standard empirical risk minimization (ERM).

1. Introduction

Recent studies reveal that deep neural networks (DNNs)

learn unintended decision rules from spurious correlations

[15], also known as model bias. For example, researchers

*The corresponding author
1Codes and checkpoints are available at https://github.com/

davelee-uestc/nsf_debiasing.
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Figure 1. 1) Ideally, bias attributes (e.g., color) should be evenly

distributed and non-predictive of the class; 2) Sampling bias can

introduce unintended patterns, like most circles being red and most

stars being purple, causing some features to mistakenly correlate

with class labels. Since ERM training minimizes the mean loss,

an ERM-trained model is highly likely to fit these spurious cor-

relations due to their large population in the data; 3) Intuitively,

a transformation producing invariant representation for different

values of bias attributes reduces the possible of learning bias.

[7, 16, 36, 39, 52] report that models infer disease using

cues of medical devices rather than symptoms. The sam-

pling bias is blamed for introducing spurious correlations

between attributes and class labels in data [2, 6, 47], as il-

lustrated in Fig. 1. However, such unexpected biases are

often masked by satisfying performance on i.i.d. test data

[11, 44], and hard to annotate in advance, making methods

[25, 40, 48] requiring bias attributes or labels less practical.

One possible way of addressing unknown model bias is

to eliminate bias-relating features (known as spurious fea-



tures) to obtain a bias-invariant representation so that the

classifier does not rely on them. The key challenge of such

methods is to make proper assumptions of possible spuri-

ous features. Some methods [28, 46] use assumptions from

the empirical manifestation of biases such as assuming sim-

pler features, like color, to be spurious. Although seemingly

straightforward, this assumption is task-specific, and has a

clear limitation: they fail if the task changes, for example,

changing from classifying numbers to colors in the Colored-

MNIST dataset [3].

Instead, we estimate the bias-invariant representation

using the fact that samples affected by spurious features

tend to exhibit a dispersed distribution in the feature space.

Specifically, we propose a task-independent assumption of

spurious features, termed the strong spurious assumption,

to estimate the bias-invariant representation without bias at-

tributes or labels. This assumption is supported by recent

findings: while DNNs produce both core and spurious fea-

tures [19], DNNs favor strong features (high availability),

regardless of whether they are core (predictive) or spurious

(bias-related) [25, 41], meaning that the model becomes bi-

ased only when spurious features are stronger. This strong

spurious assumption defines a characteristic in feature space

for same class samples with different spurious feature val-

ues: the samples of majority values are closer to their cen-

troid while the minority deviates. As illustrated in Fig. 1

(b), when the bias is most circles are red while most stars

are purple, stronger spurious feature (color) makes purple

circles closer to star class centroid rather than circle class

centroid while the red circles don’t, making samples of dif-

ferent spurious attribute separable. This characteristic en-

ables us to (1) use the presence of a minority sample (purple

circles) as the indicator of spurious features; (2) distinguish

the majority (red circles) and minority groups (purple cir-

cles) and estimate a bias-invariant representation using the

groups found. We provide theoretical proof using a widely

accepted debiasing data model [41] for binary classification.

Building on this foundation, we introduce Neutralizing

Spurious Features (NSF), a debiasing method that does not

require prior knowledge of bias attributes. NSF consists

of four key steps: (1) Identifying Bias Presence: Minority

samples that deviate from the class centroid are identified,

as such deviations indicate the presence of spurious fea-

tures. (2) Neutralizing Spurious Feature for Bias-Invariant

Features: Use identified groups to estimate a bias-invariant

representation for each class. (3) Eliminating Spurious Fea-

ture: Learn a common transformation across all classes that

aligns all training samples within a class to the estimated

bias-invariant features. This transformation eliminates spu-

rious features while preserving core features. (4) Updat-

ing Classifier: Finetune the classifier on these bias-invariant

features, forcing reliance on core features alone.

To validate the effectiveness of the proposed method, we

conduct experiments on multiple popular benchmarks. Ex-

periments across four image and text tasks with known spu-

rious correlations and one medical dataset show an aver-

age improvement of 20% in Worst Group Accuracy (WGA)

compared to Standard training via ERM, achieving state-

of-the-art with a very fast speed (within a few minutes). We

performed ablation studies and qualitative analysis to vali-

date the key components and intuition.

The contributions of this paper are as follows.

• We leverage the separable of samples affected by spurious

features in feature space, enabling an estimation method

for bias-invariant representation. We provide theoretical

proof of its correctness.

• We introduce a novel, non-intrusive debiasing framework

with four steps—bias identification, neutralization, spuri-

ous feature elimination, and classifier update—enabling

robust learning on core features without bias labels.

• Extensive experiments across multiple challenging

benchmarks and comprehensive ablation studies validate

our approach, demonstrating its state-of-the-art perfor-

mance, effectiveness of individual components.

2. Related Works

Removing Known Spurious Correlations Spurious corre-

lations are common in real-world datasets [15] due to natu-

ral relationships [15] or selection bias [47]. A common as-

sumption is that bias attributes are known and labeled. This

ideal assumption is the basis of the group-robustness meth-

ods [40] and retraining-based methods [8, 12, 25], which

are the upper bound of debiasing methods, despite the im-

practical of labeling bias. A more reasonable assumption is

that only the bias attributes are known, and we do not have

access to the bias label. The task-specified biases mostly

explored are that low-level features [5, 9, 10, 14, 18, 23, 24,

33, 34] such as the color and texture, and background short-

cut [28, 42], these biases are common in image classifica-

tion. Additionally, some work [1] uses zero-shot insights

from language models to obtain priors of harmful biases.

Leveraging these priors of specific biases, methods such as

data augmentation, can be designed and applied to address

specific biases.

Removing Unknown Spurious Correlations Biases

vary across tasks and manifest as unexpected patterns, mak-

ing unknown biases a more common problem. As we

know nothing about the bias, an assumption of bias is re-

quired. One representative assumption is the simplicity bias

[45, 46], which refers to features that are easy-to-learn or

learned at the early training phase are more likely to be a

bias. It is also common to assume that an ERM-trained

model is biased and leverages the learned bias for debiasing.

Methods such as Lff [34] and Echoes [21] learn a model

that differs from the biased model by minimizing the mutual

alignment of the two. It is also natural to extend this idea



to learning a set of diverse hypotheses, as seen in [27, 45].

Furthermore, some works [9, 29] use bias-adversarial aug-

mentation for model debiasing. Digging bias-conflicting

samples is another solution for addressing unknown biases,

considering that the spurious correlations could be effec-

tively eliminated if the effect of the minority groups, known

as the bias-conflicting samples, were amplified. A straight-

forward idea is reweighting those bias-conflicting samples

[35, 44], or reforming the representation space using those

samples [20, 51, 53]. However, those methods usually rely

on an empirical set of bias-conflicting samples such as false

positives, and require to retrain the model. The limitations

of these methods arise because these assumptions use in-

direct manifestations of the biases and do not capture the

intrinsic nature of the biases, thus being costly in training

and yielding unsatisfactory performance. In contrast, the

proposed method directly eliminates the spurious features

by adding a single linear transformation after the frozen en-

coder, leveraging a derived conclusion from the bias-fitting

mechanism.

3. Problem Statement

We start by defining our problem setting. Formally, letD =
{(x⃗i, yi, gi)}

n
i=1 denote the dataset, where x⃗i is the input

feature, yi is the corresponding label, and gi = (ai, yi) ∈
G is the corresponding group defined by the label y and a

spurious attribute a ∈ A that spuriously correlates with the

label (i.e., G = A× Y ).

3.1. Masked Poor Generalization on Minorities

The ERM is a common practice of training DNNs, which

aims to find the hypothesis h∗ ∈ H that minimizes the em-

pirical risk under the loss function ℓ : H×X × Y → R:

h∗ = argmin
h∈H

1

n

n
∑

i=1

ℓ(h(x⃗i), yi), (1)

where H is the hypothesis class, X and Y denote the

input and output spaces respectively. The ERM selects a

model from a hypothesis class that minimizes average loss

over training data, and results in majority groups having a

greater impact, so the ERM makes a good average perfor-

mance, but underperforms for minority groups [48].

Learning Goal: Optimizing Worst Group Accuracy

Our goal is to learn a model h : X → Y that maximizes the

least accurately predicted subgroup, also known as Worst

Group Accuracy (WGA). This goal ensures that the perfor-

mance of minority groups is taken into account. The WGA

is defined as:

Accwg(h) = min
j∈{1,2,...,k}

1

|Dj |

∑

(x⃗i,yi)∈Dj

1[h(x⃗i) = yi],

(2)

where Dj denote j-th group, 1[·] is the indicator func-

tion, h is the classifier.

3.2. The Challenge of Unknown Biases

Considering the ERM objective, poor generalization on

minority groups indicates that the model learns patterns

aligned with the majority group but not consistently true

within each class. These spurious correlations—valid for

the majority but not the minority—lead models to make in-

accurate predictions for minority groups [15].

If the groups within the dataset are known, we can ad-

dress the issue of poor performance on minority groups by

using group reweighting or resampling such as [25, 40].

These techniques ensure that the model pays equal atten-

tion to all groups, thereby improving performance on the

least accurately predicted subgroup. However, in many real-

world scenarios, the groups are not explicitly labeled, and

how the groups formed is unknown, making it hard to im-

prove the performance of the model on minorities.

In summary:

• ERM minimizes average loss over the dataset but often

overfits to spurious features prevalent in majority group

data, masking poor generalization on minority groups.

• Models fitting spurious correlations cause incorrect pre-

dictions for minority groups. However, in many real-

world scenarios, the groups are not explicitly labeled, and

how the groups formed is unknown, making it hard to ap-

ply group reweighting or resampling techniques.

4. Proposed Method

4.1. Overview

To address the model bias, especially considering the bias

attributes are hard to foresee before the model is trained,

we propose NSF, a novel debiasing method that does not

require prior knowledge of bias attributes. We develop a

method to estimate mean values of the true data distribution

without accessing the bias labels. Thus, NSF can elimi-

nate the spurious features by transforming features to align

training samples with estimated unbiased mean values of

the true data distribution, and debias the classifier through

fine-tuning, as in Fig. 2.

4.2. The Biased­Sampled Data Model

To address these spurious correlations, it is essential to

understand their origins. Here, we use the widely used

[8, 12, 41] assumption of sampling bias. It refers to certain

members of a population being systematically more likely

to be selected than others, leading to non-representative

samples [2]. Sampling bias can cause labels to mistakenly

correlate with a specific attribute because the samples are

not representative of the entire population, as in Fig. 1. We

adopt a data generation process from [41] to model the joint
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Figure 2. NSF leverages a task-independent strong spurious assumption, enabling us to (1) use the presence of minority sample (purple

circles) as the indicator of spurious features; (2) distinguish majority (purple stars) and minority groups (red stars) and estimate a bias-

invariant representation using the groups found. NSF mitigates biases by (3) first eliminating the bias attributes by transforming features to

align training samples with estimated unbiased mean values of the true data distribution, then (4) debiasing classifiers through fine-tuning.

data distribution (Xρ, Yρ, Aρ) ∼ pρ under spurious corre-

lation. The label y ∈ Yρ follows the Uniform distribution

over {1,−1}, the data point x⃗ = [Ba, y, δ⃗] ∈ Xρ and the

spurious feature a ∈ Aρ are generated as follow:

a ∼

{

P (a = k|y = k) = ρ

P (a = −k|y = k) = 1− ρ
, δ⃗ ∼ N (⃗0, I⃗D−2),

where N is the normal distribution, D is the dimension

of x⃗, ρ ∈ (0.5, 1) , and B ≥ 1 is scalar constants. And The

conditional expectation of x⃗ is

E(x⃗|y = k) = [(2ρ− 1)Bk, k, 0⃗]. (3)

This data generation process models the characteristics of

the bias-sampled data, if ρ = 0.5, then it means that the

sampling is fair, a has no correlation with the label, or else

the sampling procedure is biased toward a specific value.

This creates a majority group with a high concentration of

a particular value, while minority groups, known as bias-

conflicting samples, form a small population [47]. In this

data model, the input x⃗ consists of core feature y, spurious

feature a and noise δ⃗:

• Spurious Feature Ba : The spurious feature a correlate

with the label y with a probability of ρ. The scalar con-

stant B controls the impact of the bias attribute a. The

bias-sampled data has a biased conditional expectation

(2ρ − 1)Bk for the spurious feature, and it is zero for

the true data distribution (ρ = 0.5).

• Core Feature y : The core features of samples only re-

late to their class labels, so the label y is used as the core

feature since the informative is equivalent. Its conditional

expectation is independent of ρ and B.

• Noise δ⃗ : Other features that not correlate with the labels.

Its conditional expectation is independent of ρ and B.

So we can find that the model fits a data distribution that

deviates from the true data distribution due to the sampling

bias, more specifically, in the spurious feature.

4.3. Confirming Bias Presence

In this section, we demonstrate that if the spurious fea-

tures are sufficiently strong, the presence of bias can be

confirmed using the relative distance to the class centroid.

We start with the definition of C
ρ
k and the relative distance

d(x⃗i). The conditional mean C
ρ
k = E[Xρ|Y = k], also

known as the centroid, can be estimated as

C
ρ
k =

1
∑N

i=1 1[y⃗i = k]

N
∑

i=1

1[y⃗i = k] ∗ x⃗i, (4)

where x⃗i is the feature. ∀(x⃗i, yi) ∈ pρ, the relative

distance between x⃗i and its corresponding centroid Cyi,ρ,

compared to the nearest centroid of another class is given

by d(x⃗i, ρ) = (x⃗i − Cρ
yi
)2 − (x⃗i − Cρ

qi
)2, where q⃗i =

argminu ̸=yi
{(x⃗i − Cρ

u)
2}.

Based on the data model, we found that if some sam-

ples significantly deviate from the mean values, indicating

the existence of spurious features, these samples are in the

minority group. This assumption is natural for the bias-

sampled data, taking the example of classifying circles v.s.

stars, the color is a strong spurious feature. However, this

spurious correlation isn’t valid for all samples due to excep-

tions like purple circles, noticing the bias is that most circles

are red. Using this conclusion, we can separate the circles

of different spurious features (red and purple) in the feature

space. Based on this insight, we propose a method for sep-

arating the minority group from the majority group by the

relative distance d(x⃗i, ρ) between data points and sample

means, as

Theorem 1 If 1− (2ρ− 1)2B4 < 0, then

∀y⃗i = y⃗j , d(x⃗i, ρ)× d(x⃗j , ρ) < 0 ⇐⇒ ai ̸= aj

For detailed proof, please refer to the Appendix. Theo-

rem 1 implies that we can confirm the existence of spurious

feature (ai ̸= aj) by checking if any samples are deviating



from their conditioned sample mean (pair of instance i, j

satisfying d(x⃗i, ρ)× d(x⃗j , ρ) < 0).

4.4. Estimating Bias­Invariant Representation

To mitigate the impact of spurious features, a feasible so-

lution is to neutralize them to obtain a bias-invariant fea-

ture, which requires estimating the unbiased mean of spu-

rious features depending on the inaccessible bias label a.

However, Theorem 1 implies that, if the spurious feature a

is strong enough, we can separate the minority group from

the majority group using the sign of relative distance d(x⃗i),
without knowing the exact value of a. This enables us to es-

timate the unbiased conditional mean Ck = C0.5
k of x⃗ in the

true data distribution. We start by identifying the majority

and minority groups in each class.

Identifying Majority and Minority Groups We make

a soft-assignment qi ∈ Q for each point as qi =
argminu ||x⃗i − Cρ

u||2. And it has yi = qi ⇒ d(x⃗i, ρ) < 0,
and yi ̸= qi ⇒ d(x⃗i, ρ) > 0. Then, we can split class Xk

into Uk = {x⃗i | qi ̸= yi, (x⃗i, yi) ∈ pρ} and Vk = {x⃗i |
qi = yi, (x⃗i, yi) ∈ pρ} by Q. Since not all class k satis-

fies that |Uk| > 0 and |Vk| > 0 (when the spurious features

not strong enough), which indicates that we cannot estimate

Ck for those classes. We exclude those classes with a mask

o ∈ O as oi = (|Uyi
| > 0)∧ (|Vyi

| > 0). Estimating Bias-

Invariant Representation Using the groups formed by the

sign of relative distance d(x⃗i, ρ), we can estimate the value

of Ck as follows.

Theorem 2 If 1− (2ρ− 1)2B4 < 0, then

Ck = E(
1

2|Uk|

|Uk|
∑

i

u⃗i +
1

2|Vk|

|Vk|
∑

j

v⃗j)

where Uk = {x⃗ | (x⃗, y) ∈ pρ, y = k, d(x⃗, ρ) > 0}, Vk =
{x⃗ | (x⃗, y) ∈ pρ, y = k} \ Uk, u⃗i ∈ Uk, v⃗i ∈ Vk.

For detailed proof, please refer to the Appendix.

4.5. Eliminating Unknown Spurious Features

Using the estimated unbiased mean Cy = u(a, y, δ⃗) of

the true data distribution, spurious features can be elimi-

nated, as in Fig. 3, by learning a channel-wise transforma-

tion t(x⃗) = w⃗(x⃗− b⃗) + b⃗ where w⃗ ∈ R1×D and b⃗ ∈ R1×D

to make all data points close to their corresponding condi-

tioned mean value.

We here provide a simple verification that the corre-

sponding channels of core features are kept unchanged,

while those of spurious features are eliminated after trans-

formation. Using Eq. (3) (with ρ = 0.5 in the true data

distribution), we have Cy = u(a, y, δ⃗) = [0, y, 0⃗], x =

[Ba, y, δ], and we learn a t(x⃗) = w⃗(x⃗− b⃗)+ b⃗ = [w1(Ba−

b1), w2(y − b2), w⃗3(δ⃗ − b⃗3)] to make t(x) = Cy , then

x x-b

w(x-b)w(x-b)+b

𝑥 = 𝜇𝑥
𝑥 = 𝜇𝑥

Estimated Unbiased Mean
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Figure 3. A linear transformation t(x) is learned to eliminate the

spurious features by shifting them to their unbiased mean and re-

ducing variance so that the correlation between the spurious fea-

ture and label is removed.

• Spurious: w1(Ba− b1) = 0
optimal
←−−−−− w1 = 0, b1 = 0

• Core: w2(y − b2) = y
optimal
←−−−−− w2 = 1, b2 = 0

• Noise: w⃗3(δ⃗ − b⃗3) = 0⃗
optimal
←−−−−− w3 = 0, b3 = 0

So optimal t(x) = [0, y, 0⃗], making core features kept un-

changed, and spurious features and noise are eliminated af-

ter the transformation.

Learning the Feature Transformation t(x) The opti-

mization objective is to minimize the Euclidean distance

between the unbiased mean and the transformed data points

Lreg = λ||w⃗||2 +
1

N

N
∑

i

oi||t(sg[x⃗i])− Cyi
||2, (5)

where sg[·] is the stop-gradient operation. This objective

ensures that the core feature remains unchanged, while the

impact of spurious features and noise is reduced.

4.6. Debiasing the Classifier

Even with transformed features, a classifier can still make

false predictions due to high coefficients on spurious fea-

tures. Here we train a new classifier on the balanced-

sampled data aligning with the true data distribution.

Minority Sampling For better debiasing, the training

data should be sampled fairly from the majority and mi-

nority groups, which are found in Section 4.3. Formally, let

D = {(x⃗i, yi)}
N
i=1 be the entire dataset, andM1,M2 ⊂ D.

M1 = {(x⃗i1 , yi1) | d(x⃗i, ρ) > 0 ∧ d(t(x⃗i), 0.5) < 0} (6)

M2 = {(x⃗i1 , yi1) | d(x⃗i, ρ) < 0} (7)

The sampling process can be defined as SMi
=

{(x⃗1, y1), (x⃗2, y2), . . . , (x⃗B , yB) | (x⃗k, yk) ∈ Mi, 1 ≤



LABELS WATERBIRDS CELEBA MULTINLI CIVILCOMMENTS MEAN

TR. VAL I.I.D. WGA I.I.D. WGA I.I.D. WGA I.I.D. WGA WGA

ERM ✗ ✗ 97.30 72.60 95.60 47.20 82.09 68.11 92.34 57.06 61.24

JTT[30] ✗ ✗ 93.30 86.70 88.00 81.10 78.60 72.60 91.10 69.30 77.43

MT[4] ✗ ✗ 93.00 86.40 91.30 78.00 ———— Not Applicable ————

CNC[53] ✗ ✗ 90.90 88.50 89.90 88.80 - - 81.70 68.90 -

AFR[38] ✗ ✗ 94.20 90.40 91.30 82.00 81.40 73.40 89.80 68.70 78.63

OURS ✗ ✗ 95.65± 0.0011 91.12± 0.0063 88.70± 0.0036 84.27± 0.0047 80.43± 0.0003 73.12± 0.0008 87.19± 0.0010 79.51± 0.0022 82.01

GDRO[40] ✓ ✓ 93.50 91.40 92.90 88.90 81.40 77.70 88.90 69.90 81.98

DFR[25] ✗ ✓ 94.20 92.90 91.30 88.30 82.10 74.70 87.20 70.10 81.50

ULA[48] ✗ ✓ 91.50 86.10 93.90 86.50 ———— Not Applicable ————

Table 1. Results of mean (i.i.d) and worst-group accuracy (WGA) and standard deviation over 10 random seeds on four image and text

debiasing benchmarks. The proposed method, which does not require bias labels from the training (Tr.) and validation (Val) set, achieves

superior or comparable WGA compared to methods like GroupDRO and DFR which require bias labels.

BIAS LABEL CHEXPERT

TRAIN VAL I.I.D WGA GAIN

ERM ✗ ✗ 89.78 31.21 -

JTT[30] ✗ ✗ 75.20 60.40 +29.19

OURS ✗ ✗ 81.94 70.21 +40.00

GDRO[40] ✓ ✓ 78.90 74.50 +43.29

Table 2. Results on Chexpert Dataset.

k ≤ B}, where SM1
and SM2

are the sampled sets from

M1 andM2, respectively. The new classifier h′ is trained

using Cross-Entropy (CE) loss, as follows:

Lcls = LCE(h
′(sg[t(x⃗i)]), yi) + LCE(h

′(sg[t(x⃗′
i)]), y

′
i),
(8)

where (x⃗i, yi) and (x⃗′
i, y

′
i) are the i-th example in the

SM1
and SM2

, and sg[·] is the stop-gradient operation. We

also conduct ablation of sampling in Sec. 5.4.

5. Experiments

5.1. Experiment Settings

In this section, we provide a detailed description of the ex-

perimental setup.

Datasets & Metrics To validate the proposed meth-

ods, we conduct experiments on both image and text tasks

using five common benchmark datasets: The Waterbirds

[40] dataset comprises 4,795 images, with class labels

of landbirds and waterbirds, and a spurious attribute of

background. CelebA [31] contains over 200,000 images,

with hair color labeled and gender as a spurious attribute.

MultiNLI [49] includes over 400,000 sentence pairs cat-

egorized into entailment, contradiction, or neutral, with

the presence of negation words as a spurious attribute.

CivilComments-WILDS [26] also has over 400,000 text

samples, labeled toxic or non-toxic, with spurious attributes

related to demographic identities, including male, female,

LGBTQ, Christian, Muslim, other religions, Black, and

White. Finally, the CheXpert dataset includes over 200,000

chest radiographs labeled as ill or non-ill, without a speci-

fied spurious attribute. We report the WGA and mean accu-

racy on the test set using checkpoint from the last epoch.

Network Architecture We use ResNet-50 [17] for im-

age classification tasks, and BERT-base-uncased [13] for

text tasks as in most previous works.

Implementation Details All experiments were con-

ducted on Nvidia GeForce 3090 GPU with 24GB VRAM

using PyTorch [37]. We first train an ERM model as in

the DFR [25] study. For the CheXpert dataset, we follow

the preprocessing and groups in the SubPopBench [50] for

a fair comparison. Then a transformation is learned using

the pre-extracted embeddings from the ERM-trained model

and data in the validation set. The AdamW optimizer is

used with a learning rate of 1e-3 and zero weight decay.

5.2. Comparison with the state­of­the­art Methods

We compare the NSF against several state-of-the-art meth-

ods, including JTT [30], MaskTune (MT) [4], CNC [53],

AFR [38], GroupDRO (GDRO) [40], DFR [25] and uLA

[48], and report mean (i.i.d) and worst-group accuracy

(WGA) and standard deviation (std) over 10 random seeds

on four image and text debiasing benchmarks. As in Tab. 1,

the proposed method outperforms competing methods with

an average of 82.01% and low std.

5.3. Mitigating Bias in Medical Domain

We conduct experiments on the Chexpert [22] dataset to val-

idate the proposed method in the field of medical imaging,

since unknown biases are fatal for automatic diagnostic, as

in Tab. 2. The proposed method shows a significant im-

provement compared to baseline methods.
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Figure 4. (a) Features and the decision boundary using models trained on the waterbirds dataset, using group-balanced sampling for better

visualization. 1) Original features x⃗ allows more biased solutions for the ERM training; 2) Elimination of spurious features using t(x⃗)
leaves a smaller room for biased solutions; 3) Finetuning h

′(x⃗) using t(x⃗) results in a unbiased classifier. (b) Combinations of classifiers

of ERM h(x⃗) and debiased h
′(x⃗), and the features of raw x⃗ and transformed t(x⃗). The debiased classifier h′(x⃗) performs well using the

original features x⃗ indicating h
′(x⃗) relies on core rather than spurious features.

FEATURE FINETUNING

METHOD x⃗ t(x⃗) ERM MR WGA

BASELINE ✓ ✓ 72.60

ERM+t(x⃗) ✓ ✓ 87.85

MR+x⃗ ✓ ✓ 86.92

OURS ✓ ✓ 91.43

Table 3. Ablation of components using the waterbirds dataset.

Finetuning the classifier using the transformed features t(x⃗) with-

out resampling results in an increase of 15.25% in WGA, proving

that eliminating spurious features reduces the possibility of model

bias. The similar good performance using minority sampling illus-

trates the correctness of the majority and minority groups found,

and bias-sampled data makes a biased model.

5.4. Ablation Study

We conduct experiments on two debiasing benchmarks, the

Waterbirds (by default) and CivilComments-WILDS to val-

idate each component in the proposed NSF, and the worst

group accuracy is presented in Tab. 3 and Fig. 4(b). For a

better understanding, we visualize the features and decision

boundary in the waterbirds dataset using UMAP [32].

The ERM & Sampling Bias As shown in Fig. 4(a), we

plot group-balance sampled data from pre-extracted embed-

dings in the waterbird dataset, and borders are added as the

ratio they are sampled in the training set for better visualiza-

tion. It can be seen that such a sampling bias in the training

data results in a larger feasible solution space for the ERM

training, and most of them leverage the spurious feature for

separating those classes, leading to a model bias.

Ablation of Components As in Tab. 3, both proposed

components improve WGA, and the combination of them is

the best, demonstrating their effectiveness.

The Estimation of Bias-Invariant Feature Replacing

GROUPS h(t(x⃗))

METHOD RANDOM Uk, Vk I.I.D WGA

BASELINE 97.30 72.60
RANDOM ✓ 90.60 73.99

Uk, Vk ✓ 95.65 91.12

Table 4. Ablation of the Uk and Vk used in learning t(x⃗) using the

waterbirds dataset. Replacing each sample in the Uk and Vk with

a random one (equal to the sample mean) causes a significant drop

in mean accuracy of 6%, indicating that transforming to a biased

mean corrupts the representation. Taking the example of dog vs.

cat, it transforms a white cat to black (color of the majority group).

examples in the Uk and Vk with randomly selected exam-

ples used in learning t(x⃗), as in Tab. 4 cause a drop of mean

accuracy to 90.60%, indicating that transforming to a bi-

ased mean corrupts the representation, highlighting the im-

portance of using unbiased mean values for neutralizing the

spurious features.

Transformed Feature t(x⃗) As shown in Tab. 3, finetun-

ing the classifier with transformed features t(x⃗) improves

WGA by 15.25%, demonstrating that eliminating spurious

features reduces model bias. Fig. 4(b) shows both h′(x⃗)
and h′(t(x⃗)) perform well with the debiased classifier, with

the transformed features achieving even better results, high-

lighting the effectiveness of eliminating spurious features.

Channels of Spurious Features Discard some channels

of feature by the lowest of the coefficient w in the trans-

formation t(x) outperform random selection of same pro-

portion. This validate low w highly correlate with spurious

features so that they are eliminated, as in Fig. 5.

Debiased Classifier h′(x⃗) To validate if the classifier

successfully removes the bias, we test combinations of clas-

sifiers of ERM h(x⃗) and debiased h′(x⃗), and the features
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choosing randomly, validating lower w highly correlate with spu-

rious features so that they are eliminated, as in Fig. 3.
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Figure 6. Biases found on the Waterbirds, CelebA, and CheXpert

Datasets. The found biases are aligned with known biases (back-

ground, hair color, and medical devices).

of raw x⃗ and transformed t(x⃗), as in Fig. 4(b). The im-

provement of h′(x⃗) using the original features x⃗ indicates

the successful removal of dependence on spurious features.

6. Discussion

The Biases Found on Image Datasets As the CAM [43]

in Fig. 6, for Waterbirds, the ERM model focuses on the

background, while the debiased model centers on the bird’s

body. In CelebA, the ERM model highlights the hair,

whereas the debiased model focuses on the face. In CheX-

pert, the ERM model targets medical devices, while the

debiased model concentrates on clinically relevant areas.

These visualizations show that the found biases are aligned

with the known bias (the background, the hair color, and

medical devices) in those datasets and debiasing leads to

models using more relevant patterns.

Results on Different Architecture ViT-s with ours

COMP. WB CA MN CC MEAN

t(x⃗) 1s 2s 15s 2s 5s

h′(x⃗) 1s 1s 1s 1s 1s

Table 5. Comparison of training time on different datasets.
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Figure 7. The impact of the training steps.

achieves +5.56 in mAcc (90.78−→96.34) and +21.96 in

WGA (67.13−→89.09) on Waterbirds compared to ERM.

Swapping the Target y and Spurious Attribute a on

CelebA results in +1.87 in WGA (90.56−→92.43) and -2.79

in mAcc (98.60−→95.81) compared to ERM.

Training Efficiency & Convergence As shown in

Tab. 5, it takes only a few seconds for the proposed method

to remove the bias, highlighting advantages in training

time and cost. We abbreviate WB for Waterbirds, CA for

CelebA, MN for MultiNLI, and CC for CivilComments-

WILDS. Fig. 7 shows a clear trend of improvement in per-

formance with increased training then begins to plateau, in-

dicating a successful convergence.

Limitations The NSF follows findings in [19], which

suggest models favor strong features even when less predic-

tive. This assumption may limit the applicability of NSF un-

der weaker biases, which we should address in future works.

7. Conclusion

This work introduces NSF, a novel method for mitigating

unknown biases in DNNs. NSF effectively debias models

by identifying and eliminating spurious features, while re-

ducing their influence in the classifier, using insights from

the model’s bias-fitting mechanism. Extensive experiments

across multiple benchmarks show that NSF achieves state-

of-the-art results in both vision and text tasks, with minimal

computational cost, demonstrating its efficiency. Due to its

easy integration, non-intrusive nature, and high efficiency,

NSF provides a new choice for addressing unknown biases

in DNNs.
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